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LOCAL TELEPHONE COSTS AND THE DESIGN OF RATE STRUCTURES

BRIDGER M. MITCHELL[1]

The Rand Corporation

I. INTRODUCTION

-A well-developed body of economic theory is available to guide the

setting of prices for the multi-product regulated firm. Economic effi-

ciency can be increased by designing rate structures that incorporate

the basic principles developed from this theory. These principles call

for provisionally pricing each of the firm's outputs at its marginal

cost, testing to determine whether such rates satisfy a specified budget

constraint (e.g., revenues = costs), and then suitably modifying the

marginal-cost rates in order to satisfy the constraint. Most commonly,

the trial rates produce insufficient revenue, and then rates must be

raised according to the Ramsey rule--prices are increased above marginal

costs in inverse proportion to the individual price elasticities of

demand. This paper applies ratemaking theory to the design of rate

structures for local telephone calls that efficiently reflect the costs

of the local network...

The principal costs of supplying local telephone calls are embodied

in the switching capacity of a local central office (exchange) and the

[l]Presented at the conference "Telecommunications in Canada:
Economic Analysis of the Industry" in Montreal, March 4-6, 1981. I
thank Patricia Danzon, Ed Park and William Vickrey for helpful discussions.
This paper is based on research conducted under grant DAR-80-12668
from the National Science Foundation to The Rand Corporation.
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trunking capacity that connects local offices together. (The dedicated

local loop connecting the subscriber to the office is, of course, essen-

tial but its cost is independent of telephone usage). Several operating

companies which are proposing to introduce local measured service are

conducting special studies that will gather information about these

costs, and how they vary with maximum loads. How should these costs,

which relate to specific items of network equipment, be used to develop

prices for telephone calls, which are commonly classified in terms of

the hour at which they are placed and the distance between subscribers?

The markets for telephone services are characterized by high

capacity-related equipment costs and very low variable (traffic) costs,

the joint use of some equipment by several outputs, and the grouping

together of several outputs that are charged a common price. The fol-

lowing sections develop a series of simple models that successively

incorporate these basic elements. Throughout the paper I make several

simplifying assumptions:

- the unit of output is a "call" of fixed duration, and

there is a uniform rate of demand during any given

period

- demand for a given output depends only on its own price,

so thgt there are no temporal or spatial cross-

elasticities

- all costs are due to providing capacity to meet the

maximum rates of output and capacity can be constructed at

constant returns to scale

- the costs of connecting subscribers to the telephone network

via local loops are recovered in fixed monthly charges

-. 45-
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II. A SINGLE EXCHANGE

All telephone calls originate and terminate in one exchange and

this output is produced using a single component of switching capacity.

There are only two commodities, x and x2, the number of calls made in

two equal-length periods ("day" and "night"). This situation is a ver-

sion of the well-known Boiteux-Steiner peak-load pricing problem in

which a homogeneous resource with a maximum capacity is available to

produce output in each period.

The economic structure of the one-exchange telephone call market is

given by the rate of demand functions for the two periods

(1) x1 = x1(p), x 2 = x2(p2),

the required capacity

(2) K = max {x,
t

and total cost

(3) C = OK

where B is the per-call unit capacity cost.

The marginal cost of a commodity is the change in total cost that

results from a one-unit increase or decrease in the production of that

commodity. In the long run, capacity can be adjusted to meet maximum

demand. Therefore if x1 > x2 at the observed prices, the marginal costs

are

mc = aC/ax =

(4) 2 2
() mc = ac/ax 0.
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This basic model can be used to illustrate several approaches to

pricing telephone service. Each rate structure can be evaluated in

terms of its effect on economic welfare, measured by the sum of consu-

mers' and producer's surplus

(5) W = CS + PS = Z I" xt(t)dt + I ptx t -max{x t  •

t Pt t t

1. Flat-rate pricing

Set p l = p2 = O. The total (usage) cost of local telephone service

is recovered by increasing the fixed monthly charge per subscriber. Such

flat-rate pricing seems inefficient. But because prices are zero,

equipment to measure the number of calls is not needed, and the result-

ing saving in resources can outweigh the gains of per-call charges.

Nevertheless, in order to focus on the design of usage-sensitive rate

structures I will neglect measurement costs in this paper.[1]

2. Average-cost pricing

Set p = p2 = p= average cost = C/(x 1+X2). Charging a positive

price p per call is seemingly more efficient than flat-rate pricing.

In period 1 capacity is a scarce resource; the reduced demand due to the

positive price will reduce calling and therefore capacity and total

costs. But calling will also be reduced in period 2, even though excess

capacity is available. Compared to flat-rate pricing the net result can

be either a gain or loss in welfare.

(llFor a comparison of benefits and costs under flat versus meas-
ured rates in a simple case, see Mitchell, 1980.



In Fig. 1 the reduction in calling from flat-rate levels, x (o) and

x 2(0), to average-price levels, x (p) and x 2(p* ) reduces capacity costs

by D[x 1 (0) - xl(p*)], shown by areas S1 + T + U. At the same time con-

sumer surplus is reduced by S in period 1 and S2 in period 2. Thus, as

1 1 2illustrated in Fig. la, welfare is increased if S + T + U > S + S

If the demand curve is linear, S1 = T, and a welfare gain occurs when

11 2

SI + U > S2 . In contrast, Fig. lb shows a relatively more elastic off-peak

demand. In this case S1 + U < S 2; average-cost pricing imposes greater

welfare losses in the off-peak market than it achieves in net savings in

the peak period.

3. Peak-load pricing with a firm peak

Set pl = p 2 = 0. In period 1, the marginal cost of an addi-

tional call is the marginal cost of increasing capacity, 0. So long as

demand in period 2, at a zero price, is less than period 1 output, the

marginal cost of an additional call in period 2 is zero. These rates are

optimal. Moreover, because capacity is produced at constant returns to

scale, average cost and marginal cost are equal per unit of peak output.

Therefore, these marginal-cost prices exactly recover total costs.
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(a)Inceaed elfre S1 + U>1

ps2

X2 (p) x () x ( (p*) X, (0)

(b) Reduced welfare: S 1 + U < S2

K Fig. 1 -Welfare effects of average-cost pricing
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4. Peak-load pricing with a shifting peak

Set p1 > O, p2 > 0, p1 + p= . If the previous rate structure,

2
with p = 0, would cause the period 2 demand to exceed period 1 demand

the result is a "shifting peak." In this case a positive period 2 price

is necessary to equalize demands (x = x 2 ) in both periods. The optimal

rates are those that simultaneously (a) bring about this joint peak, and

(b) sum to the marginal costs of capacity.

In the joint peak case the marginal cost of a commodity depends on

whether its output is increased or decreased. An increase of 1 unit of

1 2either x or x requires adding a full unit of capacity and therefore

has a marginal cost of 0; but a decrease in either output permits no

saving in capacity and has a zero marginal cost. However, the optimal

prices of the joint peak case may be interpreted as the marginal oppor-

tunity cost of output in each period when capacity is fixed.[2] The

opportunity cost of supplying a marginal call in period 1 is the value

of the most valuable alternative thait must be foregone--the withdrawal

of one period-1 call worth p from some other subscriber. Similarly,

2
the opportunity cost in period 2 is p . And the sum of subscribers'

marginal valuations of capacity, p + p2, must equal the marginal cost

of expanding capacity, B. Except where explicitly noted below, I

assume hereafter that a "firm peak" exists at the rate structures under

consideration.

[2JSee Hirshleifer, 1958.



This one-exchange model of the peak-load pricing problem yields

clear-cut guidelines for ratesetting:

- price should be highest in the period with the maximum demand;

- price should exclude capacity costs in a period that has

excess capacity

- optimal prices are equal to marginal costs.

This conventional economic wisdom is an extensive abstraction from

the complexities of actual regulated industries. When expanded to

include fuel costs, it is perhaps most nearly applicable to the pricing

of electricity, an industry in which the bulk of the fixed resources

take the form of central generating and transmission capacity which is

needed by all consumers.

However, the technology of the telephone industry corresponds less

accurately to this paradigm. Instead, capacity is distributed

throughout the network in a large number of separate facilities, each of

which is available to serve only certain types of calls. To better

characterize these aspects of telephone technology, I examine succes-

sively more detailed models.
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III. SEVERAL ISOLATED EXCHANGES

In each exchange, subscribers place and receive calls only within

the exchange. If each exchange has its own rate structure, the pricing

problem is that of the previous model. But in practice, a single rate

structure must be designed for an entire group of exchanges--for exam-

ple, all exchanges within one state.[1]

To illustrate this case, it is sufficient to consider just two

exchanges, A and B, with demands

tt t
(6) xA(pA), xB~pB) t = 1, 2

and capacities

(7) KA max {xtA), KB = max {xB)

t t

The total cost of local telephone usage is

(8) C =A KA + 5BKB .

Restricted Rate Structures

Because the exchanges are grouped the rates must satisfy the res-

trictions

(9) P A 2P B P A P B

[l)In discussing this paper William Vickrey points out that such
restrictions on the rate structure would be avoided if the telephone
company could signal the price to the subscriber at the time he placed
his call. Indeed, such dynamic pricing, when combined with equipment to
automatically forward one-way messages, promises substantial improve-
ments over static time-of-day rate structures.

- - .jJT '~T
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Of course, a common rate structure for both exchanges that is based

either on flat rates or on an average price that applies in both periods

will satisfy these restrictions. These cases are much like those con-

sidered for a single exchange.

Optimal restricted peak-load rate structures can be determined by

maximizing the welfare function (5) subject to the pricing restrictions

(9). In general, the optimal prices are weighted averages of the margi-

nal costs of the individual commodities

(10) pt= [btA/(btA+btB)] mct + [btB/(btA+btB)] mct

where

(11) bt. = axt /apt j = A, B

It is important to note that the weights for the marginal costs are

composed of the slopes of the demand curves, not the number of calls.

When a common price must be charged for two commodities with differing

marginal costs, some loss of efficiency must result. For example, sup-

pose the common price were set equal to the marginal cost in market A.

Then the gap between this price and marginal cost in market B would

cause a distortion given by the familiar welfare triangle with area pro-

portional to the slope of the demand curve in that market. Bringing the

price closer to mcB will reduce that loss but create one in market A.

The best balance of gain and loss depends on the demand changes in each

market, as shown by equation (10).

A key result of restricting the admissible set of rate structures

is that the optimal pricing rules can no longer be stated solely in

terms of cost data, i.e., set price equal to marginal cost. Instead, as

shown in equation (10), demand data, in the form of slopes or elastici-
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ties, are commingled into the pricing rule. 7'wo types of peak-load cases

need to be considered.

1. Same peak period in each exchange

With maximum demand in period 1 in both exchanges, marginal costs are

1 ^ 1
mc A A' mc B B

(12 ) 2

mc A mc= I

Thus, the optimal rates are

p = [b A/(bl A+bl B)] A + [bl B/(bl A+bI B) BB

(13)
2
p =0.

The requirement that the exchanges be grouped for ratemaking

imposes a particular type of data aggregation. Although there are four

separate commodities, the admissible rate structure distinguishes only

two types of output--total period-1 demand and total period-2 demand

(the number of daytime calls and the number of nighttime calls

throughout the state). For this case the optimal price for period-1

calls is a weighted average of the per-unit capacity costs in each

exchange; in period 2 each exchange has idle capacity and the price is

therefore zero.

Because the weights for the capacity costs are the slopes of the

demand curves in each period, not the number of calls, this rate struc-

ture will not (except by chance) exactly recover total costs when capa-

city costs vary by exchange. To satisfy the revenue constraint (without

resorting to a fixed charge), one or both prices must be adjusted. The

best feasible rate structure would modify these prices, taking the

demand elasticities in each market at each period into account. As a
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result, a positive off-peak price could be efficient if demand is

relatively inelastic in that period.

2. Peak periods vary by exchange

Suppose that in exchange A the maximum demand occurs in the first

period, whereas in exchange B demand is maximal in period 2. In this

case marginal costs are

me A mc B =0

(14)
2 2

mc A O 0, mc B OB

and the optimal rates are

(15) p1 = [bl/1b1 2 2 2 2
Abl/Cb A+b p~ [A b B/(b A+b ~

In period 1, the price is a fraction of the marginal capacity cost

in exchange A. The relationship for period 2 price is similar. In each

case the proportions depend on the demand slopes of the commodities in

each exchange. Again, these optimal prices will not generally satisfy

the budget constraint and the best feasible prices would modify these

rates on the basis of demand elasticities.

Quantity-weighted marginal costs

A feasible method of meeting the budget constraint is to construct

the prices using quantity weights in place of slope weights in the pre-

vious formulas. Let

(16) 8tA= xtA/(XtA+xtB), et = xtB/(xtA+XtB) = 1 - OtA t = 1, 2
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be the proportions of the grouped outputs that occur in each exchange in

period t. For case 1 (same peak period) set

(17) p 1 1A A + 81BB$ p2 = 0.

For case 2 (different peak periods) set

(18) pl = 6 1AOA, p2  2BB

These rates, based only on quantity information, can be given an infor-

mative interpretation in terms of suitably defined marginal costs.

Marginal cost of a group of commodities

When commodities are grouped it is not immediately apparent just

what the "marginal cost" of the aggregate is. To define its marginal

cost we must specify how each of the components of the group changes

when the group itself changes by one "unit."

One plausible definition is to specify that the quantities of each

commodity in the group vary proportionately. Thus for a change dxt in

the group quantity let the components change by

(1) dt Et t t t t
(19) dxtA 0 Adx dxtB B

The marginal cost of the grouped output in period t is then

(20) mct = 3C/x 8 tAmcA +0 tBmcB t 1, 2

Thus, the group marginal cost is defined as the quantity-weighted aver-

age of the individual commodity marginal costs.

With constant returns to scale, the rates (equation (17) or (18))

based on this measure of marginal costs are feasible. And in one spe-

cial case they will be optimal--when the individual commodities that

make up a group have the same elasticities of demand. To see this,
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write the equation (15) for the optimal restricted rates in terms of

elasticities

Sit t qt t

t A A A t + B t
(21) P t t + mc A t t t t B

A A +fBxB n A A + Bx B

t t

When 1A = TB. the weights for the terms mc A and mc B are just the quan-

tity weights etA) 8t . In this case, commodities are homogeneous in
B,

terms of demand, and the optimal pricing rule requires only cost data.

I

4i
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IV. A NETWORK OF EXCHANGES

Each exchange has intra-exchange calling as in the previous model.

In addition, there are inter-exchange (AB) calls which make use of capa-

city in the originating and terminating exchanges and also require a

third capacity component--trunking facilities that connect the

exchanges. The key feature of this model is the introduction of joint

production, which occurs when local exchange switching capacity is

shared by two different commodities.

Demands are

t = xt (pt)
A x A

(22) xtB = xtB(ptB)

B= t

xtAB = xAB~ptAD)

The capacity constraints are

KA = max (X A + xtAB)

(23) K B = max {xtB + xtAB)

KAB = max {xtAB)

where I assume each inter-exchange call requires the switching capacity

of an intra-exchange call in each of the two exchanges as well as

inter-exchange trunking. Total costs are then

(24) C = BAKA + 0BKB + 0ABKAB
A1 BA
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The optimal prices are cbtained from the Kuhn-Tucker conditions of

the mathematical program.[1] The prices are

1 1 2 2

1 1 2 2
(25) P B I B' P B 2 B

1ln 1A +1D p2 =2 +t2

AB UB A

where ti is the dual variable in period t for capacity of type j. The

central result is that even when there are as many prices as commodi-

ties, the technological interdependence of the separate markets destroys

the simple correspondence between maximum demands and maximum prices.

However, with firm peaks, the optimal prices are equal to the marginal

costs of the individual commodities.

For example, suppose that exchange A and inter-exchange calls are

day peaking (x A > X2 A and xlAB > X2 AB) and exchange B is night peaking

1 2(X1 B < x2 B ). The optimal prices will be

P A = -oA PA = 0

(26) pl = 0 p2B = iB

1 2

A' = $A + AB, P 2AB = B

Thus the inter-exchange calls should pay positive prices in both

periods, not only in their peak (t=l) period. Horeover, despite the

fIlSee, e.g. Littlechild, 1970.
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2fact that AB calling is highest in period 1, p could mathematically
AB

exceed p AB' although this is unlikely in the particular example of

local and inter-exchange calls.

Restricted rate structures

Here we reach the "realistic" case for telephone ratemaking. In

practice, rates might well be restricted to be the same for all intra-

exchange calls at a given time of day throughout a region or state, with

separate rates applying for inter-exchange calls. Frequently, however,

the same "off-peak" percentage discount is applied to both types of

calls. In this case the restrictions are

t tp B t = 1, 2

(27)

p2AB XP1AB where X = p2A/PlA = p2B/P1B

Effectively, there are three rate parameters--the mean levels of the

intra-exchange and inter-exchange rates and the percentage discount in

the off-peak period.

In principle, the mathematical program for the welfare-maximizing

network prices can be solved for any specified constraints on the rate

structure. For a small problem--such as this example--this is quite

feasible. But for realistic situations, the dimensions of the problem

are substantially greater. M, rather than two exchanges, must be con-

sidered. Because the rate of demand varies over both the daily and

weekly cycle, N distinct periods must be analyzed. And there are

several levels of inter-exchange calls, conventionally grouped according

to distance bands.

- - - -A
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V. EVALUATING THE EFFICIENCY OF TELEPHONE RATE STRUCTURES

A practical approach is to use the structure of the demand and cost

model to evaluate the welfare effects of alternative rate structures

without attempting to achieve a global optimum. This approach should be

undertaken at two levels.

1. A Given Rate Structure

A particular rate structure specifies a grouping of commodities

into time periods, distance bands, and perhaps geographic areas. The

quantity-weighted marginal costs of each grouped output can be calcu-

lated by proportionately incrementing demands of each commodity in the

group. (For example, if the peak period is 8 a.m. - 5 p.m., weekdays,

the traffic load curve at those hours can be increased by a constant

percentage). By calculating the "Ramsey number" of each group k at

current prices and output levels

(28) Rk = .k(Pk - mck)/Pk

the group marginal costs can be compared with prices.[l] If rates are

optimal (given the rate structure), all of the Ramsey numbers will be

equal. If not, welfare can be increased by raising rates for groups

with low Ramsey numbers and reducing rates for high R k values.

2. Alternative Rate Structures

Some redesigning of the rate structure may yield welfare gains at

least as large as those achievable by adjusting rate levels. Two

closely related questions must be investigated--the number of different

[ISee Willig and Bailey, 1977.
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prices to charge, and the particular commodities to be included in each

group. For example, local telephone rates might be limited to two price

levels throughout the week, with the particular hours that peak prices

apply determining which telephone calls are grouped together.

Guidance for grouping commodities is provided by two results from

the earlier analysis:

1. If, within each group, all commodities have the same marginal

cost, then a group price equal to the common marginal cost will

be (first-best) optimal. This will be true even if the commo-

dities have different elasticities of demand.

2. If, within each group, all commodities have the same elasticity

of demand, then price should be equal to the quantity-weighted

average of the commodity marginal costs.

For the telephone network, the marginal costs of several commodi-

ties will be similar when they (a) have the same peak period, and (b)

use equipment that has similar unit capacity costs. As for demand elas-

ticities, they will perhaps be similar when exchanges are grouped by

type of customer.

These general considerations suggest that efficient grouping will

be promoted by combining commodities according to similarities in both

marginal costs and demand elasticities. For example, alternatives to a

proposed 8 a.m. - 5 p.m. peak period could be considered by comparing

both the demand elasticities and marginal costs at, say, 6, 7, and 8

p.m. with those in earlier hours. Hours that clearly follow the earlier

elasticity and cost pattern readily suggest an extended period for the
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time-of-day rate structure. A mixed pattern of elasticities and costs,

however, would require evaluating different Bombinations of grouped

hours.

To evaluate a change in the number of prices in the rate structure

additional data are needed. Practical restrictions on the number of

separate rates are presumably due to the "transactions costs" the sub-

scriber must bear to cope with an increasingly detailed structure of

rates, and the additional administrative complexity for the telephone

company of calculating, defending and revising such rates. Measurements

of transaction costs are not readily available. However, one can demon-

strate the size of the efficiency gain that could be realized by adding

an additional rate, or on the other hand, the efficiency cost of simpli-

fying the rate structure in a specified manner. These values can then

be compared to subjective assessments of the hassle of coping with rate

structures of differing complexity.
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VI. SUMMARY

The design of appropriate rate structures for local telephone calls

should be determined by the technology and cost characteristics of the

local network. Apart from the equipment dedicated exclusively to serve

each subscriber, nearly all of the costs of local telephone service are

due to providing capacity sufficient to meet maximum demands. Thus,

some form of peak-load pricing is desirable. A uniform average-cost

price at all hours may be less efficient than a flat-rate tariff which

charges nothing per call, even if metering were costless.

Switching and trunking capacity is distributed throughout the net-

work and jointly used by different types of calls. As a result, optimal

prices may be positive when demand is below the maximum level, and the

highest rate need not occur at the hour of peak demand.

Realistic rate structures can have only a limited number of

separate prices, requiring that individual commodities be aggregated

into groups. An efficient rate structures will combine hours and routes

that have similar marginal costs and demand elasticities.

I
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